skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Husty, Manfred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lenarčič, Jadran; Husty, Manfred (Ed.)
    The multidirectional transmission characteristics of a five-bar linkage can be visualized by plotting Jacobian-defined velocity ellipses inside its workspace. The orientation, size, and aspect ratio of these ellipses indicate directional force and velocity multiplication from the actuators to the end-effector. Our broader goal is approximate dimensional synthesis to achieve desired ellipses. On a workspace bound, the minor axis of a velocity ellipse collapses while the major axis aligns tangential to the bound. Interior to the workspace, ellipses vary with continuity. Therefore, the shape of a workspace bound influences the interior ellipses. The workspace bounds of a five-bar linkage are formed from segment of four-bar coupler curves (the locus of endpoint positions while the five-bar is held in output singularity conditions) and circular segments. Therefore, interior ellipses can be influenced by the path synthesis of four-bar linkages that represent the five-bar situated with certain links held colinear (the output singularity conditions). This paper details the synthesis of these four-bar coupler curves for forming the workspace bounds of a five-bar in order to influence its interior ellipses. Our approach employs saddle graphs that detail the connectivity of critical points over an optimization function. 
    more » « less
  2. Lenarčič, Jadran; Husty, Manfred (Ed.)
    The multidirectional transmission characteristics of a five-bar linkage can be visualized by plotting Jacobian-defined velocity ellipses inside its workspace. The orientation, size, and aspect ratio of these ellipses indicate directional force and velocity multiplication from the actuators to the end-effector. Our broader goal is approximate dimensional synthesis to achieve desired ellipses. On a workspace bound, the minor axis of a velocity ellipse collapses while the major axis aligns tangential to the bound. Interior to the workspace, ellipses vary with continuity. Therefore, the shape of a workspace bound influences the interior ellipses. The workspace bounds of a five-bar linkage are formed from segments of four-bar coupler curves (the locus of endpoint positions while the five-bar is held in output singularity conditions) and circular segments. Therefore, interior ellipses can be influenced by the path synthesis of four-bar linkages that represent the five-bar situated with certain links held colinear (the output singularity conditions). This paper details the synthesis of these four-bar coupler curves for forming the workspace bounds of a five-bar in order to influence its interior ellipses. Our approach employs saddle graphs that detail the connectivity of critical points over an optimization function. 
    more » « less